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The panoply of cognitive, affective, motivational, and social functions that underpin everyday human expe-
rience requires precisely choreographed patterns of interaction between networked brain regions. Perhaps
not surprisingly, diverse forms of psychopathology are characterized by breakdowns in these interregional
relationships. Here, we discuss how functional brain imaging has provided insights into the nature of brain
dysconnectivity in mental illness. Synthesizing work to date, we propose that genetic and environmental
risk factors impinge upon systems-level circuits for several core dimensions of cognition, producing trans-
diagnostic symptoms. We argue that risk-associated disruption of these circuits mediates susceptibility to
broad domains of psychopathology rather than discrete disorders.
Introduction
The human brain comprises some 100 billion neurons and

possesses a computational capacity that far exceeds even the

most powerful computers. This impressive degree of cerebral

horsepower is not the product of some 1011 automatons working

in isolation. Rather, the massive and massively flexible capacity

of the human mind is enabled by the ability of these neurons to

organize themselves into coherent coalitions, dynamically

arranged in precise temporal and spatial patterns. The number

of neurons in the human brain is dwarfed only by the number

of their potential connections: even if only two-way interactions

are considered they exceed nearly 100 trillion, if one accepts

a count of synapses as proxy. Simply put, what makes a brain

a brain is its ability to flexibly create, adapt, and disconnect

networks in a manner that permits efficient communication

within and between populations of neurons, a feature that we

call connectivity. The panoply of cognitive, affective, motiva-

tional, and social processes that underpin normative human

experience requires precisely choreographed interactions

between networked brain regions. Aberrant connectivity

patterns are evident across all major mental disorders, suggest-

ing that breakdowns in this interregional choreography lead to

diverse forms of psychological dysfunction.

The purpose of this review is three-fold. First, we will evaluate

current conceptual and methodological approaches to mea-

suring neural connectivity using functional brain imaging.

Second, we will argue that connectivity analysis can inform

ongoing debates about the classification of mental illness.

Wewill demonstrate that transdiagnostic patterns of dysconnec-

tivity underlie transdiagnostic patterns of psychiatric symptoms,

and may explain why comorbidity among diagnostic categories

is so frequently observed. Third, wewill propose that genetic and

environmental risk factors for mental illness induce susceptibility
990 Neuron 74, June 21, 2012 ª2012 Elsevier Inc.
to broad domains of psychopathology, rather than discrete

categorical disorders, because they disrupt core connectivity

circuits in ways that necessarily produce transdiagnostic symp-

toms (Figure 1; Figure 2). To illustrate this point, we will show that

several genetic variants that induce broad susceptibility to

mental illness perturb specific connectivity circuits to engender

disorder-spanning symptoms.

Connectivity as Functional Integration
Brain information processing can be conceptualized along two

organizational principles: functional segregation and functional

integration (Friston, 1994). Functional segregation refers to

specialized processing that takes place in ‘‘local’’ populations

of neurons, often defined by common functional properties (for

example, language processing in neurons in the left inferior

frontal gyrus). Such specialization extends even beyond the pro-

cessing of stimulus categories or external stimulus features to

encompass motivationally salient contextual elements of a stim-

ulus, for example neuronal encoding of internal goal representa-

tions in the dorsolateral prefrontal cortex (Miller and Cohen,

2001). However, successful execution of even simple behaviors

requires that the specialized outputs of each of these functionally

segregated neuronal populations be integrated. Connectivity

makes this functional integrationpossible. Theanatomical frame-

work underlying connectivity has been the subject of several

excellent recent reviews (Johansen-Berg and Rushworth, 2009;

Sporns, 2011). Here, we focus on the functional mechanisms

that permit integration between specialized processing nodes.

Connectivity mediates the convergence of manifold computa-

tions about external sensory stimuli and internal states, and

serves a vital enabling function through which such computa-

tions are ultimately able to influence behavior. Patterns of

connectivity across regions are dynamically arranged according
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Figure 1. Overview of the Model: Common
Symptoms Arise from Common Circuit
Dysfunction
A pleiotropic risk factor for psychopathology
increases susceptibility to disorders ‘‘A’’ and ‘‘B.’’
This factor alters the function of brain circuit ‘‘BC’’
that supports multiple related cognitive processes
(C1–C3, comprising a ‘‘domain’’ of cognition; blue
shading). Deficits in these cognitive processes
lead to symptoms Sa-Si that are lawfully related to
the specific cognitive domain, but which overlap
diagnostic taxons. Some of these symptoms will
constitute diagnostic criteria for categorical
disorder ‘‘A’’ but not disorder ‘‘B’’ (yellow shading),
and some symptoms will be relatively selective for
disorder ‘‘B’’ but not disorder ‘‘A’’ (red shading).
However, the plurality of symptoms will overlap
the two diagnostic categories (‘‘transdiagnostic
symptoms,’’ orange shading). This highlights the
idea that connectivity circuits convey cognitive
and symptom domain-specific, but disorder-
general, genetic risk for mental illness.
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to moment-to-moment changes in the array of available external

sensory inputs, internal states, and response options. The

complexity inherent in this constant adaptive reconfiguration of

functional integration between regions would appear to provide

many opportunities for failure, each accompanied by a charac-

teristic set of cognitive, emotional, motivational and social

consequences, or symptoms.

Ithas longbeennoted thatalterations incircuit-level connectivity

can have a more pronounced impact on behavior and psychopa-

thology compared to disruptions in regional activity alone. The

notion that major forms of mental illness, such as schizophrenia,

are essentially disorders of dysconnectivity has a long history

that stretches back more than a century. Such ‘‘disconnection

hypotheses’’ motivated some of the earliest neuroimaging

analyses of connectivity and set the stage for the thousands of

connectivity studies in health and disease that have been reported

since. These investigations have significantly advanced our

understanding of both the functional underpinnings of normative

cognition and the pathophysiology of mental illness. These

advances are due in large part to the development of multiple

complementary methods for measuring functional integration.

Approaches to Connectivity Measurement
Connectivity approaches based on the measurement of

brain function can be subdivided on the basis of whether they
Neuron
assess interregional statistical depen-

dencies in signal (functional connectivity)

or whether they estimate causal inter-

actions between regions (effective con-

nectivity). In both cases, connectivity

measures are obtained by analyzing

changes in functional MRI blood oxygen

level-dependent (BOLD) signal across

multiple sequential measurements in

two or more brain regions. If BOLD signal

acquisition takes place at rest, these

measures will reflect intrinsically orga-
nized patterns of spontaneous signal fluctuation, termed

‘‘resting-state connectivity.’’ If acquisition takes place during

the performance of a cognitive task, these measures will reflect

the dynamic organization of systems-level networks that are

arranged according to the specific cognitive demands of the

task (task-based connectivity).

Functional Connectivity

Functional connectivity metrics quantify linear statistical depen-

dencies between BOLD signal time series in two or more brain

regions. Univariate functional connectivity approaches typically

consider correlations between BOLD signal time-course within

a ‘‘seed’’ region (defined on a-priori on the basis of anatomy or

task-related activity) and BOLD time course in a ‘‘target’’ region.

In addition, correlations with seed region BOLD signal can be

computed for each voxel across the brain. By appropriately

thresholding the resulting whole-brain, voxelwise correlation

maps, it is possible to discover networks of regions with patterns

of significantly correlated activity. Multivariate techniques,

such as independent component analysis (ICA) (Calhoun et al.,

2004), principal component analysis (Metzak et al., 2011), and

partial least-squares (Krishnan et al., 2011) have also been to

applied to imaging data sets to assess functional connectivity.

These techniques produce maps of spatiotemporal covariance

that do not rely on the specification of a-priori seed regions,

and can be particularly useful for network discovery or for
74, June 21, 2012 ª2012 Elsevier Inc. 991



Figure 2. Variability in Circuit-Level Connectivity Leads to Variability in Network-Specific Symptom Expression
Idealized radar plots depict connectivity within four core networks for executive, affective, motivational, and social cognition, centered on DLPFC, amygdala,
striatum, and VMPFC, respectively. Distance of each spoke from the center represents the magnitude of deviation in node-wise connectivity from ‘‘normal.’’
Functional connectivity is considered here as a normally distributed quantitative trait; thus, ‘‘normal’’ can be thought of as the populationmean. Units are arbitrary.
Continuous variation in the function of these circuits leads to variability in expression of symptoms linked to each network, ranging from ‘‘healthy’’ (unlikely to
cause psychological dysfunction) to ‘‘symptomatic’’ (associated with significant dysfunction, impairment, or distress).
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corroborating results produced by seed-based approaches.

Both univariate and multivariate techniques can be employed

to study resting-state and task-based connectivity.

Resting State Functional Connectivity

Analyses of resting-state functional connectivity (rs-fcMRI) are

grounded in the observation that correlated spontaneous low-

frequency (<0.1 Hz) fluctuations in BOLD signal are found

between numerous and diverse gray-matter processing nodes

during rest (Raichle, 2010). Multiple functional networks have

been identified, each characterized by coherent patterns of

intrinsic activity between nodes. Examples include the ‘‘default’’

mode network, amotor network, a medial lobememory network,

a dorsal attention network, and a frontoparietal control network

(Buckner et al., 2008; Van Dijk et al., 2010). Segregated connec-

tivity networks involving the cingulate, hippocampus, striatum,

and cerebellum have also been discovered through the use of

seed regions (Van Dijk et al., 2010). Of note, the organization of

many resting state networks bears close resemblance to

patterns of activity observed during task states, suggesting an

involvement in aspects of cognition (Smith et al., 2009). Univar-

iate, seed-based techniques aremost commonly used to identify

rs-fcMRI networks, with seeds often derived from the anatomical

parcellation of participants’ structural MRIs, functional ROIs

based on participant responses to a task, or ROIs defined by
992 Neuron 74, June 21, 2012 ª2012 Elsevier Inc.
previously published functional activation peaks (e.g., from

meta-analyses of task data). Multivariate techniques such as

ICA largely recapitulate the results from seed-based approaches

(Van Dijk et al., 2010). However, ICA can group univariate results

differentially across components based on how they interrelate,

andmay be able to identify networks nodes that are not apparent

using univariate methods (Jafri et al., 2008).

Task-Based Functional Connectivity

It is also useful to understand how brain networks adapt and

reconfigure themselves in response to an external stimulus or

a change in psychological state. Measures of task-based

functional connectivity can be thought of as assessing the

change in BOLD signal covariance between two or more regions

caused by an experimental manipulation. As with rs-fcMRI,

both univariate and multivariate techniques can be applied to

task data. Univariate approaches typically involve comparing

correlation strengths between a seed ROI and a target or set

of targets (such as all voxels in the brain) between two experi-

mental conditions. Methods have been developed to allow for

functional connectivity assessment in both block-design and

event-related fMRI designs, permitting fine-grained evaluation

of connectivity changes during discrete stages of cognitive tasks

(Rissman et al., 2004). Of the available methods, psychophysical

interaction analysis (PPI) has arguably gained the strongest
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foothold in the imaging community, owing largely to its relatively

straightforward implementation (O’Reilly et al., 2012). In PPI

modeling, a seed region is specified, and regression slopes are

estimated between activity in that seed and a set of targets.

Changes in slopes are calculated on a voxelwise basis between

experimental conditions, revealing a map of regions where the

influence of seed region activity on target activity is significantly

modulated by the experimental manipulation.

Functional connectivity approaches are highly valuable for

network discovery. Further, specific functional connectivity

network parameters show heritability and are associated with

familial risk for psychopathology, suggesting genetic control

over inter-regional synchronization (Rasetti et al., 2009; Wood-

ward et al., 2009; Glahn et al., 2010; Repovs et al., 2011).

However, it should also be noted that functional connectivity

analyses are limited by their model-free, inherently correlational

nature. They do not permit directional (i.e., causal) inferences,

nor is it possible to discern whether an observed functional rela-

tionship between two regions is direct or mediated (Buckholtz

et al., 2008).

Effective Connectivity

In contrast to model-free functional connectivity techniques,

effective connectivity methods take a hypothesis-driven ap-

proach to assessing regional interactivity. Effective connectivity

models are explicitly causal. They specify a priori the direction of

influence between two or more regions, and the manner by

which such causal influences aremoderated by specific psycho-

logical contexts. A variety of methods have been developed

to assess effective connectivity, including dynamic causal

modeling (Friston et al., 2003; Krishnan et al., 2011), Granger

causality mapping (Roebroeck et al., 2005), multivariate autore-

gressive modeling (Harrison et al., 2003), graphical causal

modeling (Ramsey et al., 2010), and structural equation

modeling/path analysis (Mcintosh, 2011). However, the direc-

tionality of a putative casual inference is assumed based on

one’s explicit model, which should be informed by relevant di-

rectionally-specific anatomical data. It cannot be measured

directly. In other words, the inferential power of effective connec-

tivity is constrained by the validity of the underlyingmodel, which

must be examined critically. Thus, it is often useful to empirically

confirm causality via complimentary methods, and to test for the

best fit among a variety of alternative models.

Imaging the Connectome

A rapidly advancing research frontier uses graph theoretical

metrics (Bollobas, 1985) to quantify global properties of all

connections between a set of brain regions or nodes, the con-

nectome. These analyses have shown that the topology of the

brain connectome is neither completely regular nor fully random,

but displays so-called ‘‘small world’’ properties (Bullmore and

Bassett, 2011) that are advantageous for efficient information

transfer at low wiring costs (Sporns et al., 2005; Achard and

Bullmore, 2007; He et al., 2007). Interestingly, the dynamic prop-

erties of network activities supported by these empirically

observed network topologies suggest that they live on ‘‘the

edge of chaos,’’ supporting the kind of rapid formation, dissolu-

tion and adaptation of connectivity that is critical for mental

activity (Bassett et al., 2006). The ‘‘hubs’’ of these networks

correspond to the most highly interconnected neural regions,
which often map to association cortices (He et al., 2007). A

twin study by Fornito and coworkers (2011) showed that 60%

of the individual variance in the cost-efficiency metrics of

functional circuits is attributable to additive genetic effects

(Fornito et al., 2011), suggesting that these methods are poten-

tially useful for understanding neural mechanisms of genetic

risk for mental illness (Fornito et al., 2011).

Connectivity and the Classification of Mental Illness
Connectivity analyses in healthy subjects have uncovered

specific network mechanisms that underlie diverse aspects

of cognitive, affective, motivational, and social functioning.

The study of psychopathology has also benefited greatly

from this approach. Network disruptions have been found in

numerous mental disorders, providing new insights into the

pathobiology of mental illness. Additionally, by showing how

causal (e.g., genetic) factors for psychopathology disrupt typical

patterns of functional integration within distributed brain

circuitry, connectivity measurement is emerging as an important

tool for discovering etiopathophysiological mechanisms. The

picture that is starting to emerge from this line of research has

significant implications for how we classify mental disorders.

The application of brain connectivity methods to the study of

psychiatric risk mechanisms comes at a moment when the clas-

sification of mental illness is under intense discussion and

debate (Hyman, 2010). Many in the field believe that the notion

of discrete, categorical mental disorders, originally articulated

by the Research Diagnostic Criteria and reified in the DSM-III

and DSM-IV, is so far removed from biological reality that it

actually impedes clinically useful scientific discovery. These

psychiatric diagnostic systems employ criteria that are derived

from clinician observation, patient self-report, and course.

Though originally intended to be ‘‘merely’’ reliable operationali-

zations of clinical phenomena, over time, these categorical clas-

sifications came to be treated as though they were natural

kinds—inherently meaningful, ontologically (i.e., biologically)

valid taxons. This has produced the assumption that each

DSM-defined disorder is ‘‘real’’—a distinct, independent entity

with a unique set of causal factors and pathophysiological

processes.

However, several observations belie this assumption. Even at

the level of clinical symptoms and signs, dimensionality and

comorbidity are pervasive (Kessler et al., 2005; Markon, 2010;

Krueger and Markon, 2011), suggesting that the categorical

model of the DSM provides a poor fit to the latent structure of

psychopathology (Krueger and Markon, 2006). Etiological

studies largely reaffirm this observation. By and large, genetic

risk for psychiatric disorders is pleiotropic, conferring liability to

broad dimensions of symptomatically related disorders, such

as schizophrenia and bipolar disorder (International Schizo-

phrenia Consortium et al., 2009; Gejman et al., 2011). Moreover,

mental illness is generally characterized by polygenic inheritance

(Gejman et al., 2011), with multiple small-effect risk alleles

producing a continuous distribution of genetic liability. This

implies that disorders may be extreme manifestations of

normally distributed quantitative traits (Plomin et al., 2009) and

provides a challenge to the validity of categorical models of

psychiatric illness and risk. On the whole, extant data suggest
Neuron 74, June 21, 2012 ª2012 Elsevier Inc. 993



Figure 3. Genetic Variation Affects Risk for Psychopathology by Disrupting Cognition-Specific Brain Circuits
Frontoparietal (LPFC-dACC-IPS), corticolimbic (LPFC-vmPFC/OFC/pgACC-amygdala), frontostriatal (LPFC-vMPFC/OFC-striatum), and DMN (VMPFC-PCC-
TPJ/iPL) circuits underpin core executive, affective, motivational, and social domains of cognition, respectively. Heritable variation in the function of these circuits
produces deficits in circuit-specific cognitive domains, whichmanifest as clinical symptoms. Circuit-specific, but transdiagnostic, cognitive processes (cognitive
domains) and symptoms (symptom domains) are shown for each network. Allelic variants in MAOA, DRD2, and ZNF804A are shown affecting specific networks
that may account for their observed pleiotropic effects, as indicated by available data.
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a model of genetic liability to psychopathology that is both

continuous and dimensional, involving the graded expression

of ‘‘symptom domains’’ that are common to multiple diagnoses

rather than specific unique categorical disorders (Figures 1

and 2).

Connectivity data generally support this model. Just as trans-

diagnostic symptoms overlap comorbid disorders, similar

patterns of dysconnectivity are observed across multiple diag-

nostic boundaries. This atypical connectivity occurs within brain

networks that underpin particular domains of cognition (e.g.,

executive, affective, motivational, and social; Figures 2 and 3).

We propose that the network-specific alterations in cognition

that arise as a consequence produce network-specific clusters

of transdiagnostic symptoms. Accordingly, pleiotropic risk

genes appear to increase susceptibility to multiple categorically

distinct disorders because they dysregulate connectivity within

these networks, altering cognition in a network-specific fashion

to bias the expression of disorder-spanning symptoms (Figures 1
994 Neuron 74, June 21, 2012 ª2012 Elsevier Inc.
and 3). These heritable symptom-specific/disease-general net-

work alterationsmay reflect an intrinsically meaningful classifica-

tion of illness, ‘‘carving nature at the joints’’ in a way that DSM

diagnostic criteria do not.

This proposal is synergistic with current efforts to redefine

psychiatric nosology in terms of underlying biology, such as

the Research Domain Criteria (RDoC) initiative of NIMH (Insel

et al., 2010). RDoC is organized around domains largely corre-

sponding to neuropsychological functions. What we outline

here goes one step further by proposing that specific circuits

are biologically meaningful systems-level units of inquiry both

for investigating etiology, and for understanding transdiagnostic

contributions to psychopathology. In the following section, we

will illustrate this concept by showing that DSM-defined cate-

gories have diagnostically overlapping patterns of disrupted

connectivity within brain circuits implicated in diagnostically

overlapping symptom domains. While we use neuropsychologi-

cal function as an organizing principle in this review, it is
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important to note that we do not claim or imply a one-on-one

mapping of connectivity abnormalities to cognition. Neural

circuit abnormalities, especially if extensive, maymap on several

cognitive domains as they map on several psychiatric diag-

noses. Nevertheless, a useful and somewhat distinct taxonomy

of connectivity abnormalities emerges that supports a dimen-

sional view of the symptom architecture underlying psychiatric

disease.

Connectivity in Psychopathology: Symptom-Specific
Associations to Circuits
Brain Networks for Attention and Cognitive Control

Executive cognition encompasses a suite of cognitive processes

that permit the selection and stable maintenance of environ-

mental inputs, and the dynamic control of motor outputs,

according internal goals or rules (Miller and Cohen, 2001).

Connectivity between lateral frontal, dorsal cingulate, and dorsal

parietal cortices appears to be critical for many components of

executive cognition, as it is consistently observed during tasks

that index working memory, goal-directed attention, conflict

detection, and online performance monitoring (Dosenbach

et al., 2007; Wang et al., 2010b; Cole and Schneider, 2007;

Stevens et al., 2009; Hampson et al., 2006). Deficits in executive

cognition comprise a symptom domain that spans a number of

disorders, including schizophrenia, attention-deficit/hyperac-

tivity disorder (ADHD), major depressive disorder (MDD), and

substance abuse (Barkley, 1997; Garavan and Hester, 2007;

Barch and Smith, 2008; Luck and Gold, 2008; Murrough et al.,

2011). Common patterns of atypical connectivity within a dorsal

lateral prefrontal-cingulate-parietal network are apparent across

these disorders, and may contribute to symptoms relating to

attention, working memory, and cognitive control (Tan et al.,

2006; Schlösser et al., 2008; Vasic et al., 2009; Woodward

et al., 2009; Castellanos and Proal, 2012; Ma et al., 2010). This

is consistent with the idea that the common expression of cogni-

tive symptoms among categorically distinct psychopathologies

arises from common network pathology.

Brain Networks for Affective Arousal and Regulation

The amygdala, medial prefrontal cortex (ventromedial and

medial orbital aspects, along with perigenual cingulate cortex)

and lateral prefrontal cortex comprise a corticolimbic circuit

that is important for engendering and regulating vigilance and

arousal responses to biologically salient stimuli (Pessoa, 2010;

Kim et al., 2011). This circuit is consistently engaged during tasks

that evoke negative emotional arousal or require the regulation of

negative emotional responses (Zald, 2003), suggesting involve-

ment in aversive affective experiences. Affective symptoms

such as anxiety, anger, rumination, and hypervigilance are

common to many forms of psychopathology, being especially

prominent in mood, anxiety and personality disorders. Similar

patterns of corticolimbic circuit dysfunction cut across diag-

nostic taxons, and may explain the transdiagnostic nature of

negative affect symptoms. For example, cingulate-amygdala

circuit dysfunction predicts high levels of trait negative affect

(Pezawas et al., 2005; Cremers et al., 2010), and is evident in

schizophrenia (Rasetti et al., 2009), conduct disorder (Marsh

et al., 2008), and substance dependence (Upadhyay et al.,

2010) in addition to mood and anxiety disorders (Matthews
et al., 2008; Dannlowski et al., 2009; Etkin et al., 2010; Etkin

and Schatzberg, 2011; Lui et al., 2011). Of note, cross-diagnostic

analyses confirm that cingulate-amygdala dysconnectivity is

a source of common affective vulnerability in generalized anxiety

disorder and MDD (Etkin and Schatzberg, 2011). Similarly,

changes in amygdala coupling with DLPFC and ventromedial

cortex are present across mood, anxiety, and personality disor-

ders (Marsh et al., 2008; Etkin et al., 2009; Erk et al., 2010;

Ladouceur et al., 2011; Motzkin et al., 2011). vMPFC-amygdala

dysfunction may have particular relevance to reactive aggres-

sion, anger, and irritability, as alterations in this circuit are

associated with higher levels of aggressive traits and behavior

(Coccaro et al., 2007; Buckholtz et al., 2008; Buckholtz and

Meyer-Lindenberg, 2008; Hoptman et al., 2010). Taken together,

connectivity studies suggest that corticolimbic circuit dysfunc-

tionmay account for symptoms of negative affect that are shared

among otherwise categorically distinct disorders.

Brain Networks for Reward and Motivation

Functional interactions between prefrontal cortex and striatum

are important for integrating reinforcement signals with current

goals to flexibly guide attentional focus and action selection

(Wickens et al., 2007; Balleine and O’Doherty, 2010). Disrupting

frontostriatal information flow impairs motivational and hedonic

responses to rewards, cognitive flexibility, and value-based

learning and decisionmaking (Kehagia et al., 2010). Such impair-

ments are widespread among mental disorders and cut across

diagnostic boundaries; examples include anhedonia (present in

both schizophrenia and mood disorders), impulsivity (present

in ADHD, substance abuse, schizophrenia, and personality

disorders), and compulsivity (present in OCD and substance

abuse). Changes in striatal coupling with DLPFC, VMPFC, and

cingulate are observed in many of these disorders (Harrison

et al., 2009; Heller et al., 2009; Schlagenhauf et al., 2009;

Wang et al., 2009; Hamilton et al., 2011; Hong et al., 2010;

Park et al., 2010; Liston et al., 2011). Notably, vMPFC-striatal

dyregulation is linked to individual variability in impulsivity (Bjork

et al., 2011; Diekhof et al., 2011), suggesting a particular rele-

vance of this circuit for disinhibitory or externalizing psychopa-

thology (Krueger et al., 2005). In sum, dysfunctional frontostriatal

connectivity may constitute a common neurobiological origin for

transdiagnostic reward, motivation and decision-making symp-

toms in mental illness.

Default-Mode Network Connectivity and Social

Cognition

Spontaneous correlated activity is observed between the

tempoparietal junction (TPJ), posterior cingulate cortex (PCC),

and VMPFC when the brain is at rest (Raichle et al., 2001). The

precise function of this ‘‘default mode network’’ (DMN) is still

under active debate (Raichle, 2010). However, some have noted

that it bears striking resemblance to a circuit that is engaged

when people think about the thoughts, beliefs, emotions,

and intentions of others (Buckner et al., 2008), prompting spec-

ulation that the DMN is involved in self-representation and social

cognition (Schilbach et al., 2008). Social cognitive deficits are

another class of symptoms that transcend discrete diagnostic

categories, and across disorders they are associated with espe-

cially poor clinical outcomes (Brüne and Brüne-Cohrs, 2006).

Though more research is needed to better characterize the
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Neuron

Review
connectomics of impaired social cognition in psychopathology,

dysfunctional DMN connectivity is a pervasive feature of mental

illness. Atypical connectivity within the DMN, and between DMN

regions and ‘‘task-positive’’ nodes (e.g., DLPFC and cingulate

cortex), is apparent in psychosis, personality disorders, mood

disorders, and ADHD (Castellanos et al., 2008; Whitfield-Gabrieli

et al., 2009; Sheline et al., 2010; Chai et al., 2011; Cole et al.,

2011; Garrett et al., 2011; Holt et al., 2011; Motzkin et al.,

2011). If the DMN is important for self-representation and social

cognition, as has been suggested, alterations in DMN connec-

tivity may contribute to impaired social functioning in diverse

disorders.

Connectivity Circuits Convey Symptom-Specific/
Disease-General Risk for Mental Illness
As we mentioned above, comorbidity between mental disorders

is the rule rather than the exception, invading nearly all canonical

diagnostic boundaries. In fact, covariation among psychiatric

diagnoses is so prevalent, and so extensive, that it alone belies

the artificial nature of phenomenologically based categorical

classification. Findings in both community and clinical samples

suggest that while DSM-based models of discrete taxa provide

a poor fit to the data, dimensional models characterized by

continuous liability to psychopathology fit the data well (Krueger

and Markon, 2011; Markon et al., 2011). Latent variable

approaches have proven especially useful in moving toward

an empirical classification of mental illness (‘‘quantitative

nosology’’). This class of multivariate techniques approximates

the latent structure of psychiatric illness by assessing common

and unique symptom variance across disorders. These analyses

have identified three core syndrome spectra: internalizing

(high negative affect; including anxiety, depressive, phobic,

and obsessive-compulsive symptoms), externalizing (behavioral

disinhibition; including impulsivity, substance abuse, and antiso-

cial behaviors) and thought disorder (atypical/bizarre cognitions;

comprising psychotic, paranoiac, and schizoptypal symptoms)

(Kotov et al., 2011; Krueger and Markon, 2006).

Twin studies demonstrate that common genetic factors

largely account for the observed syndromic clustering, suggest-

ing a biological basis for coherent patterns of comorbidity

derived from factor analysis (Kendler et al., 2003, 2011). Put

another way, high covariation at the phenotypic level appears

to be shaped by high covariation at the genetic level (Lahey

et al., 2011). According to this proposed genetic architecture,

common sources of genetic variability drive comorbidity

between symptomatically related disorders within syndrome

spectra. However, the precise biological mechanisms though

which genes predispose risk for broad syndrome spectra remain

unresolved. Here, we propose that connectivity circuits may be

systems-level units that underlie the observed clustering of

symptoms. According to our model, genetic liability to psycho-

pathology disrupts the function of brain connectivity circuits,

producing deficits in core domains of cognition that manifest

as transdiagnostic symptom clusters (Figures 1 and 2). As one

example, executive dysfunction spans diagnostic taxons; a

genetic variant perturbing frontoparietal connectivity would,

almost necessarily, increase susceptibility to multiple disorders,

because the resulting deficits in executive function are not
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disorder specific. While it would still be a simplification to

assume that genetic variants have an impact on only one such

circuit (Meyer-Lindenberg and Weinberger, 2006), this model

proposes that pleiotropic effects on symptom clusters are

consistently mediated by circuits associated with these clusters

across diagnostic categories.

Our proposal is grounded in the assumption that genetic

factors significantly contribute to psychopathology-linked

patterns of altered connectivity. If this assumption is valid,

measures of functional connectivity should show significant heri-

tability. The evidence supports this. For example, the unaffected

siblings of patients with schizophrenia show alterations in fronto-

parietal connectivity that mirror changes seen in illness (Wood-

ward et al., 2009; Rasetti et al., 2011). Further, a recent linkage

analysis in 29 extended pedigrees confirms the heritability of

resting-state DMN connectivity (Glahn et al., 2010). These find-

ings confirm that genetic factors shape connectivity in networks

linked to symptom domains, and imply that connectivity

changes observed in mental disorders reflect a cause, rather

than a consequence, of being ill. Of course, this concept can

be easily extended to other causal factors associated with

mental illness, in particular, environmental or epigenetic effects.

Genetic imaging studies support the idea that heritable differ-

ences in brain connectivity contribute to the dimensionality of

mental illness. Here, we unpack this concept by detailing

connectivity findings for several well-characterized pleiotropic

genetic variants.

COMT

A functional coding variant (rs4680; val158met) within the gene

encoding the dopamine catabolic enzyme catechol-o-methyl-

transferase (COMT) has been shown to exert pleiotropic effects

on cognition, mood, and related disorders. The 158val allele,

linked to increased enzyme stability and lower dopamine levels

in brain, has modest associations to psychotic disorders and

cognitive performance (Allen et al., 2008; Goldman et al.,

2009), and strong associations to prefrontal function during

cognitive tasks (Mier et al., 2010). The 158met allele, linked to

decreased enzyme stability and higher dopamine levels in brain,

has modest associations to substance abuse, mood disorders,

and anxiety disorders and strong associations to corticolimbic

function during affective tasks (Stein et al., 2005; Pooley et al.,

2007; Lohoff et al., 2008; Kolassa et al., 2010; Mier et al., 2010;

Åberg et al., 2011). Consistent with 158val associations to

executive cognition symptoms in illness, this allele is linked to

anomalous frontoparietal connectivity during working memory

(Tan et al., 2007, 2012). In accord with 158met associations

to symptoms of negative affect in substance abuse, mood

disorders, and anxiety disorders, this allele predicts exaggerated

amygdala-VMPFC connectivity during negative emotional

arousal (Drabant et al., 2006).

ZNF804A

A series of genome-wide association studies in schizophrenia

and bipolar disorder provide evidence that ZNF804A variation

predisposes risk for a broad psychosis phenotype (O’Donovan

et al., 2008; Riley et al., 2010; Williams et al., 2011). The variant

showing most consistent evidence of association, an intron 2

SNP (rs1344706), has also been linked to schizotypal traits and

impoverished social cognition (Balog et al., 2011; Yasuda
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et al., 2011). Imaging genetic studies imply that ZNF804A asso-

ciations to these disorder-spanning symptoms may reflect

genetically influenced alterations in network function. ZNF804A

risk allele carriers demonstrate aberrant DLPFC-TPJ coupling

during mental state inference (‘‘theory of mind’’), which may

contribute to transdiagnostic symptoms of social dysfunction

(Walter et al., 2011). In addition, risk carriers show aberrant

DLPFC-VLPFC and DLPFC-hippocampal connectivity during

working memory, a heritable connectivity phenotype that is

seen in patients with schizophrenia and their siblings (Esslinger

et al., 2011; Rasetti et al., 2011), and a likely human homolog

of altered hippocampal-prefrontal synchrony reported in an

animal model of psychosis (Sigurdsson et al., 2010).

MAOA and 5HTT

Genes encoding the monoamine catabolic enzyme monoamine

oxidase A (MAOA) and the serotonin transporter (SLC6A4;

5HTT) both have notable histories of association to psychiatric

illness. The most commonly studied risk variants in both of these

genes (upstream tandem repeat polymorphisms) are both asso-

ciated with reduced serotonin clearance in the synapse leading

to elevated serotonergic tone, particularly during early develop-

ment (Holmes and Hariri, 2003; Buckholtz and Meyer-Linden-

berg, 2008). MAOA genetic variation is most notably associated

with risk for antisocial behavior and impulsive-aggressive traits,

especially in combination with early life maltreatment. By

contrast, 5HTT genetic variation is most prominently associated

with risk for mood and anxiety disorders and with neuroticism

traits, particularly in combination with high levels of life stress.

However, both genes show evidence of pleieotropy: MAOA

predisposes risk for MDD in addition to antisociality (Fan et al.,

2010; Zhang et al., 2010; Lung et al., 2011; Nikulina et al.,

2012), and 5HTT predisposes risk for antisocial behavior in

addition to depression (Beitchman et al., 2006; Haberstick

et al., 2006; Sakai et al., 2006, 2007). Critically, both impact a

corticolimbic circuit for emotional arousal and regulation (amyg-

dala-cingulate-VMPFC) that is commonly dysregulated in both

MDD and antisocial behavior. In other words, risk variants in

two separate genes disrupt connectivity in the same brain

network, increasing susceptibility to a broad domain of

psychopathology that is chiefly characterized by symptoms of

heightened emotional reactivity and poor affect regulation.

Such symptoms are common to both MDD and antisocial

personality disorder. This is consistent with our proposal that

connectivity circuits convey symptom-specific/disease-general

genetic risk for mental illness.

CNTNAP2

Interest in the neurexin superfamily gene CNTNAP2 (encoding

the contactin-associated protein-like 2) was initially piqued by

a series of cytogenic, linkage, association, and gene expression

studies in autism (Alarcón et al., 2008; Arking et al., 2008). More

recent studies show strong evidence for pleiotropy, with a

suggestive pattern of transdiagnostic associations to schizo-

phrenia, BD, and social anxiety (Wang et al., 2010a; O’Dushlaine

et al., 2011; Stein et al., 2011). Risk allele carriers show connec-

tivity changes within the DMN (PCC-MPFC), and betweenmPFC

and task-positive nodes such as DLPFC (Scott-Van Zeeland

et al., 2010). Thus, it is possible thatCNTNAP2variationproduces

disease-general social cognitive symptoms by influencing DMN
network function. Though intriguing, more work is necessary to

characterize the implications of CNTNAP2-linked DMN dysregu-

lation for social cognitive dysfunction across disorders.

DRD2

Allelic variants in and near the gene encoding the dopamine D2

receptor (DRD2) show significant pleiotropic effects, with asso-

ciations to schizophrenia, ADHD, substance abuse, and antiso-

cial behavior (Xu et al., 2004; Nyman et al., 2007; Allen et al.,

2008; Kollins et al., 2008; Colzato et al., 2010; Lu et al., 2010).

The linkage between DRD2 variation and these seemingly

diverse phenotypes may be driven by an effect on frontostriatal

circuitry for flexible, value-based action selection (Cools, 2008;

Balleine and O’Doherty, 2010). Consistent with this idea, DRD2

susceptibility allele carriers have atypical frontostriatal connec-

tivity during tasks of cognitive flexibility and reward learning

(Cohen et al., 2007; Krugel et al., 2009; Stelzel et al., 2010).

Genetically determined differences in dopamine receptor func-

tion may therefore moderate the expression of dimensional

symptoms pertaining to rewardmotivation and cognitive control,

such as impulsivity, compulsivity, and risk taking (Limosin et al.,

2003; Dalley et al., 2008; Colzato et al., 2010; Buckholtz et al.,

2010a; 2010b; Laughlin et al., 2011).

Phenotypic Heterogeneity: Polygenic Risk
and Gene-by-Environment Interactions
As we mention in a preceding section, genetic studies in mental

illness increasingly support a polygenic model of inheritance.

Many small-effect alleles and possibly several rare, but highly

penetrant variants combine to produce illness (International

Schizophrenia Consortium et al., 2009; Rucker and McGuffin,

2010; Frank et al., 2012; Gejman et al., 2011). This has two

important implications for thinking about neurobiological mech-

anisms that mediate risk for mental illness. First, though we treat

specific genetic risk factors here as though they are individual

causal entities, they are far from deterministic in isolation.

Accordingly, effect sizes for single genetic variants on psychi-

atric phenotypes are typically quite small. Second, polygenicity

implies a continuous model of liability. Variability in the specific

collection of alleles harbored in an individual genome produces

quantitative individual differences in multiple domains of biolog-

ical function. Consequently, an individual’s aggregate genetic

profile will determine where they fall on multiple distributions

of cognitive functioning. The extremes of these genetically

influenced distributions are associated with impairment and

dysfunction, manifesting clinically as symptoms. We argue

here that circuit-level connectivity is a quantitative trait that links

genetic variability and symptom variability (Figure 4). Each indi-

vidual’s polygenic profile will affect each of the circuits we’ve

outlined here to a varying degree. Across individual genomes,

patterns of genetic covariance would lead to patterns of covari-

ance in connectivity producing patterns of symptom covariance

(i.e., comorbidity). In other words, the latent structure of psycho-

pathology may reflect, in part, a genetically determined latent

structure of brain connectivity.

Though we have focused on genetic risk in this review, envi-

ronmental factors are clearly critical in determining susceptibility

to psychopathology. Importantly, data continues to accrue that

environments affect connectivity as well: chronic psychosocial
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Figure 4. Polygenic Liability to Psychopathology Produces
Continuous Variation in Network Functioning and Psychiatric
Symptoms
We propose here that individual variation in connectivity and symptom
expression are determined by multiple small-effect alleles. Across the pop-
ulation, continuous variability in the aggregate burden of deleterious alleles
harbored in each individual genome (polygenic liability) produces quantitative
differences in the function of a given brain network, and in the expression of
network-specific symptoms. In the case of the frontoparietal network depicted
here, higher polygenic liability would be associated with atypical connectivity
and relatively greater expression of executive symptoms such as poor working
memory and distractibility. Dashed lines depict the greater penetrance of
genetic liability on connectivity and symptoms in the presence of environ-
mental risk factors, such as childhood maltreatment or chronic stress.
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stress disrupts frontoparietal circuits for attentional control

(Liston et al., 2009), social context factors such as urbanicity

and low socioeconomic status impinge upon corticolimbic and

frontostriatal circuits for affect regulation and behavioral

flexibility (Gianaros et al., 2011; Lederbogen et al., 2011), and

prenatal risk factors such as intrauterine cocaine exposure

adversely affect DMN connectivity(Li et al., 2011). Individual

environments may act to modify the penetrance of genetic risk

factors (Hicks et al., 2009) by magnifying the impact of genetic

variability on connectivity circuits via epigenetic processes.

Alternatively, genetic factors may compromise functional inte-

gration across a number of networks, making those systems

more vulnerable to the effects of adverse environments (Buck-

holtz and Meyer-Lindenberg, 2008). Whatever the specific

mechanism, latent risk for broad spectra of psychopathology

and individual environmental exposures almost certainly

interact to affect connectivity, focusing symptom expression

toward more specific endpoints (Lahey et al., 2011). However,

the available body of data on environment and connectivity

is not extensive. For example, while it is well known that

environmental risk factors such as childhood maltreatment can

have enduring impact on regional structure and function, for

example in cingulate and amygdala (Dannlowski et al., 2012),

much less is known about the effects of such stressors on

connectivity circuit features. Such data, especially if they show

different effects across the life span, could add another layer

of explanatory power to the proposal to decompose psychopa-

thology across circuit profiles linked to causal factors and

symptom clusters.

Limitations and Suggestions
There are several limitations that warrant consideration. First, in

marshaling empirical evidence to support our model, we chose

to focus on specific network components where dysfunction is
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clearly evident across disorders (e.g., DLPFC-amygdala;

MPFC-ventral striatum). However, a key feature of functional

integration is its multinodal nature. By considering the coupling

of two network nodes in isolation, we may overlook important

multidimensional alterations that are present in the larger

network context. Graph analytic approaches derived from

complex network analysis may be especially valuable for deter-

mining the holistic patterns of network dysfunction that map best

onto symptom domains.

Second, we do not explicitly take task-specific effects on

connectivity into account, and have instead opted to generalize

from the body of available connectivity data. In terms of the rela-

tionship to latent cognitive processes, it is not clear how fronto-

parietal connectivity during an n-back working memory task is

meaningfully different from frontoparietal connectivity during

a Sternberg working memory task (to use one example). Nor

is it evident how frontoparietal connectivity during either of

those tasks differs from frontoparietal connectivity observed

during a cued attention task. This issue is related to larger

problem within cognitive neuroscience: the lack of a valid

taxonomy of cognitive processes (Poldrack et al., 2011). We

do not have a consensus understanding of the discrete compo-

nents that comprise cognition, their relationships to one another,

or how they map onto specific experimental tasks (Badre, 2011).

Experimental paradigms frequently index multiple cognitive

factors, and performance on different tasks that purport to

measure the same cognitive process (e.g., working memory)

often correlate weakly, reflecting the ambiguity of even well-

studied cognitive constructs (Kane et al., 2007; Poldrack et al.,

2011). These limitations lower our level of precision in linking

specific cognitive processes to clinical symptoms, risk factors,

and brain connectivity networks. As the field moves toward an

empirically derived classification of psychopathology, one

based on quantitative measures of behavior and neurobiology,

illuminating the latent structure of cognition will be key. Espe-

cially promising approaches include the incorporation of cogni-

tive factor analysis in task-based fMRI data analysis (Badre

and Wagner, 2004), online cognitive ontologies that enable clas-

sifier-based and meta-analytic parsing of cognitive constructs

(Bilder et al., 2009; Poldrack et al., 2011), and large-scale

syntheses of fMRI data that permit decoding of brain activity

patterns for these constructs via similar methods (Yarkoni

et al., 2011).

Third, we note that while alterations in connectivity can

produce psychological symptoms in the absence of regional

pathology, the converse may not be strictly true. Because

dynamic reorganization is a key property of functional brain

networks, regional deficits may reconfigure the networks in

which a region is embedded. For example, interfering with the

function of one DMN node via transcranial magnetic stimulation

leads to a reorganization of DMN architecture (Eldaief et al.,

2011). This brings a central tenet of our model into relief. Here,

we outline the importance of circuits for conveying category-

spanning genetic risk for psychopathology. We suggest that

distinct genetic risk factors for the same transdiagnostic

symptom domain impact a common circuit. However, they

may do so via different proximal means; e.g., by preferentially

affecting processing within partially or non-overlapping network
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nodes due to differences in region-specific expression. Despite

such proximal differences, the net effect of these variants on

symptom expression will be similar because of their common

influence on network functioning.

Fourth, our model largely considers specific brain circuits as

relatively independent entities that map selectively onto circum-

scribed symptom domains. The reality is clearly more complex.

Impulsivity provides a potentially instructive example. Impulsive

symptoms contribute to impairment and distress in many

disorders, including schizophrenia, bipolar mania, ADHD, anti-

social personality disorder, and substance dependence (Moeller

et al., 2001; Swann et al., 2002). We have ‘‘assigned’’ impulsive

symptoms to the corticostriatal network in our model because

there is a large body of work linking impulsivity to corticostriatal

information processing (Winstanley et al., 2006; Dalley et al.,

2008; Buckholtz et al., 2010a, 2010b; Peters and Büchel,

2011). However, impulsivity is a heterogeneous construct

with dissociable cognitive components. Deficits in response

inhibition, performance monitoring, and goal-directed attention

(indexed by go/no-go, stop-signal, and continuous performance

tasks) may contribute to ‘‘impulsive action.’’ By contrast,

deficits in value-based decision-making (indexed by delay dis-

counting tasks) are linked to ‘‘impulsive choice.’’ These facets

of impulsivity have some unique relationships to psychopa-

thology and may map onto overlapping, or interacting, connec-

tivity circuits (Christakou et al., 2011; Conrod et al., 2012).

Though not considered here, interactions between cognitive

domains, and the networks that support them, are undeniably

important for determining how psychiatric symptoms such as

impulsivity are expressed. Heritable alterations in between-

network connectivity have been reported in psychosis (Whit-

field-Gabrieli et al., 2009; Repovs et al., 2011; Meda et al.,

2012), but data in other symptom domains is more limited.

Moving forward, it is useful to consider the role that aberrant

connectivity between networks may play in mediating genetic

liability to psychopathology.

Fifth, with a few exceptions, we don’t explicitly discuss the

directionality of connectivity differences in patients or risk variant

carriers. There is directional heterogeneity in the literature, even

between two studies using the same task in the same disorder.

However, compelling directional inferences are difficult to

make from functional connectivity studies, and are model

dependent in effective connectivity studies. Moreover, given

the artificiality of DSM-based classification, directional compar-

isons between patient studies that use the same categorical

diagnosis may be confounded by biological heterogeneity. One

approach that addresses this issue is symptom-specific associ-

ation (Chabernaud et al., 2011; Shannon et al., 2011); we hope

that more patient studies using biological measures will begin

to adopt this approach.

Finally, development of the ideas outlined here will need to

take lifespan issues and plasticity into account. There is clear

evidence that connectivity patterns and plasticity vary across

the life cycle, that both experience-dependent plasticity and

environmental contributions may have widely different effects

depending on the time of exposure, and that critical periods,

such as puberty, exist whose specific in terms of connectivity

need to be elucidated fully.
Conclusions
Synthesizing available genetic, neuroimaging and clinical data,

we propose a dimensional ‘‘common symptom, common

circuit’’ model of psychopathology. We hope that our model

will be a useful heuristic that will aid the field as it moves toward

a neuroscience-based empirical classification of mental illness.

A key tenet of this model is that risk factors for mental illness

produce alterations in brain circuit function that induce suscep-

tibility to psychopathology in a manner that is cognitive and

symptom domain-specific, but disorder-general. We argue that

the linkage between common symptom variance and common

genetic variance is a function of the effect of that shared genetic

liability on brain networks underlying symptom-relevant cogni-

tive domains. This model would predict that variance in the

function of specific connectivity circuits would be represented

as distinct higher order factors that link genetic variance and

circuit-appropriate symptom variance, and could be tested by

confirmatory factor analyses in large, epidemiologically valid

twin designs that incorporate dimensional symptom ratings

and connectivity measures. We believe that the integration of

brain connectivity into genetically informative and phenotypically

rigorous experimental designs represents a crucial step forward

toward an empirically grounded quantitative nosology of mental

illness.
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dez-Ribas, R., Deus, J., Alonso, P., Yücel, M., Pantelis, C., et al. (2009). Altered
corticostriatal functional connectivity in obsessive-compulsive disorder. Arch.
Gen. Psychiatry 66, 1189–1200.
He, Y., Chen, Z.J., and Evans, A.C. (2007). Small-world anatomical networks in
the human brain revealed by cortical thickness from MRI. Cereb. Cortex 17,
2407–2419.

Heller, A.S., Johnstone, T., Shackman, A.J., Light, S.N., Peterson, M.J.,
Kolden, G.G., Kalin, N.H., and Davidson, R.J. (2009). Reduced capacity to
sustain positive emotion in major depression reflects diminished maintenance
of fronto-striatal brain activation. Proc. Natl. Acad. Sci. USA 106, 22445–
22450.

Hicks, B.M., South, S.C., Dirago, A.C., Iacono, W.G., and McGue, M. (2009).
Environmental adversity and increasing genetic risk for externalizing disorders.
Arch. Gen. Psychiatry 66, 640–648.

Holmes, A., and Hariri, A.R. (2003). The serotonin transporter gene-linked poly-
morphism and negative emotionality: placing single gene effects in the context
of genetic background and environment. Genes Brain Behav. 2, 332–335.

Holt, D.J., Cassidy, B.S., Andrews-Hanna, J.R., Lee, S.M., Coombs, G., Goff,
D.C., Gabrieli, J.D., and Moran, J.M. (2011). An anterior-to-posterior shift in
midline cortical activity in schizophrenia during self-reflection. Biol. Psychiatry
69, 415–423.

Hong, L.E., Hodgkinson, C.A., Yang, Y., Sampath, H., Ross, T.J., Buchholz, B.,
Salmeron, B.J., Srivastava, V., Thaker, G.K., Goldman, D., and Stein, E.A.
(2010). A genetically modulated, intrinsic cingulate circuit supports human
nicotine addiction. Proc. Natl. Acad. Sci. USA 107, 13509–13514.

Hoptman, M.J., D’Angelo, D., Catalano, D., Mauro, C.J., Shehzad, Z.E., Kelly,
A.M.C., Castellanos, F.X., Javitt, D.C., and Milham, M.P. (2010). Amygdalo-
frontal functional disconnectivity and aggression in schizophrenia. Schizophr.
Bull. 36, 1020–1028.

Hyman, S.E. (2010). The diagnosis of mental disorders: the problem of reifica-
tion. Annu. Rev. Clin. Psychol. 6, 155–179.

Insel, T., Cuthbert, B., Garvey, M., Heinssen, R., Pine, D.S., Quinn, K.,
Sanislow, C., and Wang, P. (2010). Research domain criteria (RDoC): toward
a new classification framework for research on mental disorders. Am. J.
Psychiatry 167, 748–751.

International Schizophrenia Consortium, Purcell, S.M., Wray, N.R., Stone, J.L.,
Visscher, P.M., O’Donovan, M.C., Sullivan, P.F., and Sklar, P. (2009). Common
polygenic variation contributes to risk of schizophrenia and bipolar disorder.
Nature 460, 748–752.

Jafri, M.J., Pearlson, G.D., Stevens, M., and Calhoun, V.D. (2008). A method
for functional network connectivity among spatially independent resting-state
components in schizophrenia. Neuroimage 39, 1666–1681.

Johansen-Berg, H., and Rushworth, M.F.S. (2009). Using diffusion imaging to
study human connectional anatomy. Annu. Rev. Neurosci. 32, 75–94.

Kane, M.J., Conway, A.R.A., Miura, T.K., and Colflesh, G.J.H. (2007). Working
memory, attention control, and the N-back task: a question of construct valid-
ity. J. Exp. Psychol. Learn. Mem. Cogn. 33, 615–622.

Kehagia, A.A., Murray, G.K., and Robbins, T.W. (2010). Learning and cognitive
flexibility: frontostriatal function and monoaminergic modulation. Curr. Opin.
Neurobiol. 20, 199–204.

Kendler, K.S., Prescott, C.A., Myers, J., and Neale, M.C. (2003). The structure
of genetic and environmental risk factors for common psychiatric and
substance use disorders in men and women. Arch. Gen. Psychiatry 60,
929–937.

Kendler, K.S., Aggen, S.H., Knudsen, G.P., Røysamb, E., Neale, M.C., and
Reichborn-Kjennerud, T. (2011). The structure of genetic and environmental
risk factors for syndromal and subsyndromal common DSM-IV axis I and all
axis II disorders. Am. J. Psychiatry 168, 29–39.

Kessler, R.C., Demler, O., Frank, R.G., Olfson, M., Pincus, H.A., Walters, E.E.,
Wang, P., Wells, K.B., and Zaslavsky, A.M. (2005). Prevalence and treatment
of mental disorders, 1990 to 2003. N. Engl. J. Med. 352, 2515–2523.

Kim, M.J., Loucks, R.A., Palmer, A.L., Brown, A.C., Solomon, K.M., March-
ante, A.N., and Whalen, P.J. (2011). The structural and functional connectivity
of the amygdala: from normal emotion to pathological anxiety. Behav. Brain
Res. 223, 403–410.
Neuron 74, June 21, 2012 ª2012 Elsevier Inc. 1001



Neuron

Review
Kolassa, I.-T., Kolassa, S., Ertl, V., Papassotiropoulos, A., and De Quervain,
D.J.-F. (2010). The risk of posttraumatic stress disorder after trauma depends
on traumatic load and the catechol-o-methyltransferase Val(158)Met polymor-
phism. Biol. Psychiatry 67, 304–308.

Kollins, S.H., Anastopoulos, A.D., Lachiewicz, A.M., FitzGerald, D., Morrissey-
Kane, E., Garrett, M.E., Keatts, S.L., and Ashley-Koch, A.E. (2008). SNPs in
dopamine D2 receptor gene (DRD2) and norepinephrine transporter gene
(NET) are associated with continuous performance task (CPT) phenotypes in
ADHD children and their families. Am. J. Med. Genet. B. Neuropsychiatr.
Genet. 147B, 1580–1588.

Kotov, R., Ruggero, C.J., Krueger, R.F., Watson, D., Yuan, Q., and Zimmer-
man, M. (2011). New dimensions in the quantitative classification of mental
illness. Arch. Gen. Psychiatry 68, 1003–1011.

Krishnan, A., Williams, L.J., McIntosh, A.R., and Abdi, H. (2011). Partial Least
Squares (PLS) methods for neuroimaging: a tutorial and review. Neuroimage
56, 455–475.

Krueger, R.F., and Markon, K.E. (2006). Reinterpreting comorbidity: a model-
based approach to understanding and classifying psychopathology. Annu.
Rev. Clin. Psychol. 2, 111–133.

Krueger, R.F., and Markon, K.E. (2011). A dimensional-spectrum model
of psychopathology: progress and opportunities. Arch. Gen. Psychiatry 68,
10–11.

Krueger, R.F., Markon, K.E., Patrick, C.J., and Iacono, W.G. (2005). External-
izing psychopathology in adulthood: a dimensional-spectrum conceptualiza-
tion and its implications for DSM-V. J. Abnorm. Psychol. 114, 537–550.

Krugel, L.K., Biele, G., Mohr, P.N.C., Li, S.-C., and Heekeren, H.R. (2009).
Genetic variation in dopaminergic neuromodulation influences the ability to
rapidly and flexibly adapt decisions. Proc. Natl. Acad. Sci. USA 106, 17951–
17956.

Ladouceur, C.D., Farchione, T., Diwadkar, V., Pruitt, P., Radwan, J., Axelson,
D.A., Birmaher, B., and Phillips, M.L. (2011). Differential Patterns of Abnormal
Activity and Connectivity in the Amygdala-Prefrontal Circuitry in Bipolar-I and
Bipolar-NOS Youth. J. Am. Acad. Child Adolesc. Psychiatry 50, 1275–1289.

Lahey, B.B., Van Hulle, C.A., Singh, A.L., Waldman, I.D., and Rathouz, P.J.
(2011). Higher-order genetic and environmental structure of prevalent forms
of child and adolescent psychopathology. Arch. Gen. Psychiatry 68, 181–189.

Laughlin, R.E., Grant, T.L., Williams, R.W., and Jentsch, J.D. (2011). Genetic
dissection of behavioral flexibility: reversal learning in mice. Biol. Psychiatry
69, 1109–1116.

Lederbogen, F., Kirsch, P., Haddad, L., Streit, F., Tost, H., Schuch, P., Wüst,
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